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At present, there are some common problems in lossy compression methods for remote sensing images, such as
block effect and blur effect, which are particularly evident at high compression ratios. Although some models
have been developed that apply prior knowledge of local smoothing to probabilistic models to address these
issues, it can result in significant loss of structural features. In this paper, a dynamic feature enhancement
network guided by multi-dimensional collaborative edge information for remote sensing image compression
(DMENet) is proposed, which can achieve high fidelity remote sensing image compression while preserving more
structural features. Firstly, a multi-dimensional feature extraction module guided by edge information (MDEI) is
carefully designed to extract structural features and edge features from images. These features are aligned
structurally through loss to achieve high-quality restoration of structural features Secondly, a slice dynamic
pyramid module (SDPM) is constructed to achieve dynamic extraction of irregular shaped features and multi-
scale features. Furthermore, a latent representation space enhancement module (LSM) is proposed to address
the issue of deep level feature loss in probabilistic models due to low information capacity. Finally, a high-quality
remote sensing image compression is performed through the entire network under the guidance of a novel rate
distortion optimization strategy (a constraint that focuses more on structural features). The experimental results
show that compared with some advanced compression models, DMENet can compress remote sensing images
more effectively.

1. Introduction important information through quantification; Finally, use entropy

encoding to compress the correlation coefficients of the solution. In

Remote sensing images can reflect various land features, such as
terrain, temperature, and crop categories. Therefore, remote sensing
images have been widely used in many fields such as environmental
monitoring, geological science, military reconnaissance, etc. [1,2,3].
However, with the development of sensor technology, the resolution of
remote sensing images continues to improve [4,5]. In addition, billions
of remote sensing images are captured and transmitted every day [6,7].
Based on the above reasons, there is an urgent need for high fidelity
remote sensing image compression methods with higher compression
efficiency.

At present, traditional image compression methods have achieved
some results [8,9]. The classic JPEG [10] and JPEG 2000 [11] mainly
consist of three parts: image transformation, quantization, and entropy
encoding. Firstly, transform and de quantify the image; Next, retain
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addition, BPG [12,13] and WebP [14] with superior performance have
also emerged. Some scholars have conducted targeted research and
improvements on remote sensing images due to their high information
entropy, rich texture, and various scale features. For example, Bascones
et al. proposed a method that combines principal component analysis
and JPEG2000 to compress hyperspectral image data, achieving
dimensionality reduction and preserving the main spectral information
[15]. Li et al. used MDSI as a quality evaluation index to improve the
BPG compression algorithm. It provides more accurate remote sensing
image quality control through a two-step compression strategy,
achieving consistency between compression efficiency and image qual-
ity [16]. Traditional remote sensing image compression methods can be
divided into predictive coding [17], transform coding [18], and vector
quantization [19]. For example, 3D-MBLP uses prediction techniques to
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first eliminate image spatial redundancy, then predict the current fre-
quency band content, and finally efficiently encode the prediction error
through an entropy decoder [20]. 3D-SPIHT, as a transformation
compression method for 3D images, achieves efficient image compres-
sion by applying 3D wavelet transform in both spatial and spectral do-
mains [21]. Qian developed an efficient and fast vector quantization
compression algorithm for multispectral images, whose core strategy is
to directly map the input vector to the best matching codeword index in
the codebook, thereby significantly improving the efficiency of data
transmission and storage [22]. However, traditional remote sensing
image compression methods have the following limitations: under high
compression ratios, there are obvious artifacts and block effects in the
reconstructed images. Therefore, for remote sensing images, traditional
compression methods are difficult to obtain high fidelity images at high
compression ratios.

To seek breakthroughs, researchers are focusing on the popular deep
learning technology in recent years. Classic deep learning-based image
compression frameworks mainly include autoencoders (AE) [23,24] and
variational autoencoders (VAE) [25,26]. The SSCNet proposed by the
Riccardo team utilizes deep convolutional autoencoder technology to
efficiently compress satellite image big data, while demonstrating
excellent performance in compression ratio and signal reconstruction
[23]. The Alves team designed a simplified version of the variational
autoencoder, specifically designed to address the computational
resource constraints in satellite image compression. By reducing the
network size and optimizing the entropy model, this encoder effectively
reduces computational complexity while ensuring compression effi-
ciency [25]. However, compared to AE, the VAE framework exhibits
stronger image reconstruction capabilities due to its continuous map-
ping space, such as generating images with smooth transitions between
pixels. In recent years, VAE based baseline networks have shown
outstanding performance in image compression, surpassing traditional
methods and achieving efficient and high-quality compression [27,28,
29,30]. VAE based image compression networks typically include a
main encoder, entropy encoding, and a main decoder. They first
compress images through neural networks, then quantize pixel data, and
finally generate efficient bitstreams using traditional encoding tech-
niques. In addition, to improve modeling accuracy and fully utilize prior
information, some compression models introduce entropy models
(Laplace entropy model, mixture Gaussian model, layered entropy
model, etc.) into the framework [31,32,33,34,35]. The above model
provides a strong theoretical basis for the remote sensing image
compression task based on deep learning. Based on the above theories,
some researchers have developed some deep learning-based compres-
sion networks for remote sensing images, and achieved good rate
distortion performance [36,37,38,39,40]. Although these methods
demonstrate some compression performance, the edges of the recon-
structed image are often blurred at low bit rates. The proposed DMENet
realizes the reconstruction of clear edges at low bit rate through the
guidance of multi-dimensional edge information. In addition, the pro-
posed DMENet also strengthens the extraction of multi-scale features
and the feature capture ability of probability models. As a result,
DMENet achieves excellent compression performance.

The common deep learning techniques used for remote sensing
image compression mainly include three categories: image compression
methods based on convolutional neural network (CNN) [41,42,43],
image compression methods based on Transformer [44,45,46], and
image compression methods based on generative adversarial network
(GAN) [47,48]. In the CNN based method, Shao et al. proposed a deep
learning based remote sensing image compression method, which de-
composes remote sensing image features into high-frequency and
low-frequency feature components through discrete wavelet transform
(DWT), and enhances the quality of high and low-frequency features
respectively [49]. In addition, Shao et al. proposed a compression
network for remote sensing images, which effectively captures a wide
range of contextual information by integrating long-range convolution
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and improved non local attention, achieving efficient compression while
maintaining a lightweight design with low computational load [50]. In
the Transformer based image compression method, Chuan et al. con-
structed a hyper prior network framework that integrates Transformer
and CNN for remote sensing image compression, considering both local
and non-local redundancy reduction. Through three-stage training to
enhance generalization ability, the compression efficiency and quality
were significantly improved [51]. In addition, Li et al. proposed an
image compression method that uses deep neural networks to distin-
guish objects and backgrounds in remote sensing images, and reduces
the bit rate by smoothing the background. Furthermore, combining
Transformer and patch local attention module to optimize compression,
balancing bit allocation through regional differentiation loss [45]. In
GAN based image compression methods, Han et al. proposed an edge
guided adversarial network aimed at preserving sharp texture infor-
mation simultaneously [47]. In addition, Kan et al. proposed a remote
sensing satellite image compression method based on conditional
generative adversarial networks, which improved the details of recon-
structed images by introducing Gaussian Laplacian loss and perceptual
metrics [48]. Although the above methods have achieved good
compression results, there may be artifacts and blurriness in the
reconstructed images at high compression ratios. The essence of this
phenomenon is the loss of structural features, which also leads to sub-
optimal rate distortion performance of these methods.

Remote sensing images contain rich structural features. Structural
features mainly include edge features, texture features, structural in-
formation, etc. In high compression ratios, losing structural features can
lead to artifacts, block effects, and blurring, resulting in the loss of
important information in the image. Therefore, efficiently aligning the
structural features between the original image and the reconstructed
image has become a pressing challenge in the field of remote sensing
image compression.

To alleviate the above problems, in this paper, a dynamic feature
enhancement network guided by multi-dimensional collaborative edge
information (DMENet) is proposed for remote sensing image compres-
sion. It can achieve high fidelity remote sensing image compression
while preserving higher quality structural features. Structural features
are divided into three categories: horizontal structural features, vertical
structural features, and edge features. Based on this, this paper con-
structs horizontal attention (HA), vertical attention (VA), and edge
feature extraction module (EEM) respectively. A multi-dimensional
feature extraction module guided by edge information (MDEI) is
designed using HA, VA, and EEM. And based on this, a multi-
dimensional synergistic loss guide by edge information (Lossypsg) is
constructed to align the structural features between the original image
and the reconstructed image. Secondly, remote sensing images often
contain irregular shaped features (such as features where multiple ob-
jects overlap, resulting in peculiar shapes) and multi-scale features.
Therefore, this paper constructs a slicing strategy (SS) for improving
computational efficiency and reducing memory usage, a strange feature
extraction block (SEB) for enhancing irregular feature extraction ability,
and a pyramid feature enhancement (PEB) for enhancing multi-scale
feature capture ability. Based on the above work, a slice dynamic pyr-
amid module (SDPM) is constructed to achieve dynamic extraction of
irregular shape features and multi-scale features. Finally, the latent
spatial representation ability of conventional probability models is
insufficient. The feature maps in probability models are deep features
extracted multiple times, which contain a large number of spatial and
channel features. However, the convolution blocks in conventional
probability models cannot accommodate a large number of features,
resulting in feature loss. For this, this paper proposes a latent repre-
sentation space enhancement module (LSM) to enhance the deep feature
representation ability of probability models. In summary, this paper
constructs a high-performance DMENet based on the proposed MDEI,
SDPM, LSM, and LossypsE.-

This study conducted extensive experiments on three remote sensing
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image datasets: San Francisco [52], NWPU-RESISC45 [53], and UC
Merced [54]. The experimental results show that compared to some
advanced compression methods, the proposed DMENet performs better
in evaluation metrics such as peak signal-to-noise ratio (PSNR) and
multiscale structural similarity index metric (MS-SSIM). In addition, the
reconstructed images are also used for remote sensing image scene
classification to test the impact of compression methods on downstream
tasks. The experiment shows that the classification performance of
remote sensing images reconstructed by DMENet is the best.
The main contributions of this paper are summarized below:

1) A multi-dimensional feature extraction module guided by edge in-
formation (MDEI) is proposed. Based on this, a multi-dimensional
synergistic loss guide by edge information (Lossypsg) is further
constructed. It can effectively extract multi-dimensional structural
features by aligning horizontal structural features, vertical structural
features, and edge features.

2) A slice dynamic pyramid module (SDPM) is designed. It can extract
irregular shape features and multi-scale features through a new
slicing strategy, a dynamic feature capture mechanism, and the
multi-scale feature enhancement block.

3) A latent representation space enhancement module (LSM) is con-
structed. It extracts multi-level spatial and channel features through
spatial attention and channel attention respectively, which can
effectively enhance the deep feature representation ability of the
probability model.

4) This study effectively integrates MDEI, SDPM, LSM, and a rate
distortion optimization strategy for structural feature alignment to
construct a dynamic feature enhancement network guided by multi-
dimensional collaborative edge information (DMENet) for remote
sensing image compression. Extensive experiments on the San
Francisco, NWPU-RESISC45, and UC Merced datasets have demon-
strated the superior performance of DMENet in multiple evaluation
metrics.

The remainder of the study is organized as follows: In Section II, the
proposed DMENet framework and the details of each module are elab-
orated. In Section III, this paper comprehensively analyzes and com-
pares the proposed DMENet and other compression methods through a
large number of experiments. In Section IV, conclusions and future work
are discussed.

2. Methodology

In this section, the proposed DMENet, as well as the modules MDEI,
SDPM, LSM, and a rate distortion optimization strategy for structural
feature alignment will be introduced in detail.

2.1. The Overall framework of the proposed DMENet

The proposed DMENet can preserve high-quality structural features
and comprehensively improve the compression performance of the
model from the perspective of aligning multidimensional structural
features between the original image and the reconstructed image. It
achieves high-quality remote sensing image compression through MDEI
for extracting structural features, SDPM for dynamically extracting
irregular features and multi-scale features, LSM for enhancing the deep
level feature representation ability of the probability model, and a rate
distortion optimization strategy focused on structural feature alignment.
MDEI involves three sub modules, including HA capable of extracting
horizontal structural features, VA capable of extracting vertical struc-
tural features, and EEM capable of extracting edge features. SDPM in-
volves three sub modules, including SS for channel slicing, SEB for
extracting irregular features, and PEB for extracting multi-scale features.
LSM involves two parts of latent spatial representation enhancement, i.
e., spatial feature enhancement and channel feature enhancement. In
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addition, this paper constructs a method for calculating structural dif-
ferences using MDEI and proposes a rate distortion optimization strategy
focused on structural differences.

The overall structure of the proposed DMENet is shown in Fig. 1. This
paper designs compression block (C block 1-4) for compression and
reconstruction block (R block 1-4) for reconstruction by reasonably
selecting the size of convolution kernels and reallocating the number of
channels, achieving excellent rate distortion performance at low
complexity. The specific parameters of C block 1-4 and R block 1-4 are
shown in Table 1. The probability model is mainly used for probability
modeling, which includes a hyperprior network (Hyper encoder, Hyper
decoder, LSM), Q (quantizer), AE (arithmetic encoding), and AD
(arithmetic decoding). The specific parameters of the Hyper encoder and
Hyper decoder are shown in Table 2, and the minimum form of data
existence in this model (bit stream) is between AE and AD. The
hyperprior network is utilized to learn the probability model (i.e. en-
tropy model) that entropy encoding relies on, and is also used to
generate the parameters of the entropy model (i.e. mean parameter y;
and scale parameter 0;2). The entropy model is modeled as a conditional
Gaussian. MDEI (where a=0.5, b=0.5, ¢=0.1, d=0.5, e=0.5, f=0.1) is
used to calculate the structural difference Lossypsg between the com-
pressed and reconstructed parts, where Lossypsg represents the differ-
ence between the structural features of the compression and
reconstruction parts. The smaller the loss value, the smaller the struc-
tural difference between the two sides, that is, the higher the quality of
the structural features. The loss used here is mean squared error (MSE),
which can be expressed as formula 1. In the rate-distortion optimization,
R represents entropy rate, 1 represents penalty coefficients used to
control different bit rates, and D represents distortion (calculated by
MSE).

m

1 2
MSE = — > (=x) )}

i=1

where, m denotes the number of pixels, X denotes reconstructed image,
X denotes original image.

In Tables 1 and 2, N represents the number of channels, | represents
downsampling, 1 represents upsampling, and RELU represents the linear
rectification function. GDN stands for generalized split normalization
function and IGDN stands for its inverse operation, which are nonlinear
activation functions and are more suitable for normalizing image data
than other normalization functions

The overall working process of DMENet is as follows. (1) Image
compression part: Firstly, the remote sensing image data blocks are
processed through C block 1-2 to obtain shallow feature maps. After-
wards, dynamic extraction of irregular shaped features and multi-scale
features is strengthened through SDPM, and the data is processed
through C block 3-4 to obtain a deep level feature map. Then, the
initially compressed deep feature maps are further processed through
quantization, arithmetic coding, and LSM enhanced probability model
to remove statistical redundancy, resulting in the minimum bit stream of
the model after data processing. (2) Image reconstruction part: The
model combines the obtained bitstream with the mean parameter y; and
scale parameter o;> in the probability model to reconstruct the image
with high quality using R block4, R block3, SDPM, R block2, and R
block1. Finally, the reconstructed and original images are input into
MDEI for structural feature alignment. And add the obtained Lossypsg to
Lossto for targeted rate distortion optimization of structural features.

2.2. MDEI

Remote sensing images contain rich structural features, including
edge features, texture features, and structural information in various
directions. The loss of structural features can lead to block effects and
blurring effects. Therefore, a three-branched MDEI is designed to extract
structural features at different levels. In addition, this paper divides
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Fig. 1. The overall structure of the proposed DMENet.

Table 1
Specific parameters of C block and R block.

Block First layer Second layer
C block 1 Conv2D 7x7 3N/4 2] GDN
C block 2 Conv2D 3x3 N/4 N/2 2] GDN
C block 3 Conv2D 3x3 N/2 3N/4 2| GDN
C block 4 Conv2D 3x3 3N/4 N 2] GDN
R block 1 Conv2D 3x3 N/4 3 21 IGDN
R block 2 Conv2D 3x3 N/2 N/4 21 IGDN
R block 3 Conv2D 3x3 3N/4 N/2 21 IGDN
R block 4 Conv2D 3x3 N 3N/4 21 IGDN
Table 2

Specific parameters of Hyper encoder and Hyper decoder.

Hyper encoder Hyper decoder

Layerl Conv2D 3x3 NN 1 Conv2D 3x3 N N 21
Layer2 RELU RELU

Layer3 Conv2D 3x3 NN 2| Conv2D 3x3 N N 21
Layer4 RELU RELU

Layer5 Conv2D 3x3 NN 2| Conv2D 3x3 NN 1
Layer6 - RELU

structural features into horizontal structural features, vertical structural
features, and edge features. Based on these three structural features, this
paper designs HA, VA, and EEM respectively, and fuses the obtained
features by multiplying them with weight coefficients to obtain feature
maps for calculating structural loss Lossypsg. Finally, a rate-distortion
optimization strategy focusing on structural feature alignment is con-
structed through Losswpsk.-

MDEI is essentially a module that aligns the structural features be-
tween the original image and the reconstructed image through loss. It
mainly consists of three parts: the module MDEI (Origin) for extracting
the structural features of the original image, the loss and the module
MDEI (Reconstruction) for extracting the structural features of the
reconstructed image. Due to the symmetrical structure of MDEI (Origin)
and MDEI (Reconstruction), only MDEI (Origin) will be introduced here.

MDEI (Origin) is a three-branched structure that includes HA for
capturing horizontal structural features, EEM for capturing edge fea-
tures, and VA for capturing vertical structural features. Firstly, input the
data block into MDEI (Origin) and use the permute to redirect it,

resulting in three data blocks X4, X1, and X5. In HA, X4 is transformed
into a vector of shapel x 1 x W using Avgpool and Stdpool, preserving
only the horizontal features of the data. Afterwards, stripe convolution is
adopted to extract the horizontal structural features of the data under
low complexity conditions. Afterwards, a series of deformation opera-
tions are performed to restore the original shape of the data block. The
process of HA can be expressed as: (Fig. 2).

Reconstruction(BarConv, .k (a(Avgpool(X4uxcxw))
+ b(Stdpool(X4mcxw))))

Xbmxwxe =

(2

Here, BarConv; . represents a stripe convolution with a kernel shape
of 1 x k, where a and b represent weight coefficients of 0.5 and 0.5,
respectively. Reconstruction includes Sigmoid, Expand, and Permute,
mainly used to restore the data block to its original shape and fuse it with
the other two branches.

The working principle of VA is similar to that of HA, with the dif-
ference being that it extracts vertical structural features. The process of
VA can be expressed as:

Reconstruction(BarConvi .« (c(Avgpool(X5cywxr))
+ d(Stdpool(X5¢cxwxn))))

Here, BarConv; . represents a stripe convolution with a kernel shape
of 1 x k, where c and d represent weight coefficients of 0.5 and 0.5,
respectively. Reconstruction includes Sigmoid, Expand, and Permute,
mainly used to restore the data block to its original shape and fuse it with
the other two branches.

The EEM branch is designed for edge feature extraction, and its
structural diagram is shown in Fig. 3. The convolution kernel of
Gaussian convolution is initialized with Gaussian to smooth and denoise
the image. The downsample used here is interval sampling down-
sampling. Upsample uses interpolation with a value of 0 inserted. After
the first Gaussian convolution, downsampling, upsampling, and second
Gaussian convolution, the differences in features in the input data are
greatly reduced, resulting in all features tending towards contextuali-
zation. Then, the original data block (containing rich edge features) is
used to subtract the data block whose features have been contextualized
to obtain the edge features of the image. It is worth mentioning that the
initial values of M and N here are 1 and 256, respectively. In this way,
the values of each point in the convolution kernel can conform to the
Gaussian distribution, to better extract the edge features. M and N here
are not fixed values, just initial values, and they will automatically fit the
network during the network training process. In addition, the

X7uxwxc =

3
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Fig. 3. The schematic diagram of EEM structure, where input tensor represents the input feature map, output tensor represents the output feature map, and
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kernel of Gaussian convolution 2 is 4 times that of Gaussian convolution 1. In Conv2D 5 x 53 3 1, 5 x 5 represents the shape of the convolution kernel, the first 3
represents the number of input channels, the last 3 represents the number of output channels, and 1 represents the number of channel groups. The parameter settings

for other convolutions are also the same. The Input data is 3 bands.

convolution kernel size is set to 5 because the input data has a large
spatial size. Therefore, larger convolutional kernels are adopted to
extract edge features over long distances. The process of EEM can be
expressed as:

X3mwxc = X1luxwxc — GaussianConv, (Upsample(Downsample
(GaussianConvy (X1p.w«c))))

4

The structural features of the original image are obtained by fusing
the data of the three branches:

Outputypgi(origing = e(X6mxwxc) + f(X3uxwxc) + 8(X7 rxwxc) (5)
where e, f, and g are the weight coefficients of the corresponding
branches, which are 0.5, 0.1, and 0.5, respectively.
Similarly, the structural feature OutpUtypgi(reconstruction) Of the recon-
structed image is also obtained.
Lossypse can  be  calculated

from  Outputypgioriginy ~ and

OuIPUtMDEI (Reconstruction) :
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Lossypse = Luse (OutputMDEI(Origin)- OUtPUtMDEI(ReEunstruction)) (6)

where Lysg denotes the loss measured using MSE.

Finally, Lossypsg aligns the complex structural features between the
original image and the reconstructed image through rate distortion
optimization to achieve high-quality image compression. This is
described in more detail in the rate-distortion optimization part.

2.3. SDPM

Remote sensing images often contain a lot of irregular features (such
as features formed by multiple objects overlapping) and multi-scale
features (such as short-range information such as ships, long-range in-
formation such as rivers crossing the entire city). Therefore, an SDPM is
designed to achieve dynamic extraction of irregular features and multi-
scale features. The overall structure of SDPM is shown in Fig. 4. It mainly
includes three core components: SS for channel slicing, SEB for
enhancing irregular feature extraction capability, and PEB for enhancing
multi-scale feature capture capability.

The remote sensing image data block is input into SDPM, and SS will
slice it along the channel dimension. Afterwards, some channels will
remain unchanged, while others will be feature extracted through
convolution. Finally, the two sets of features will be concatenated in the
channel dimension. This strategy uses a channel preservation method
like residual connections to make the model more cautious and faster in
adjusting parameters, significantly improving the model’s understand-
ing of complex channel features. The process of SS can be represented as:

qu’utSS = Fconcat (Tensoer Wxm (InPUtHx W><C) 5 COHVSX 3 (TensorHX Wx(c-m)
(Inputsrcwxc)))
(7)

Here, Tensory, wxm(Inputp.w«c) is a tensor of shape H xW xc ob-
tained by slicing the input features, Tensory.ws( mIMputucwxc) is a
tensor of shape H x W x (c —m) obtained by slicing the input features,
Convs, 3 represents a convolution with a kernel size of 3 x 3, Feonear(; )
represents a functional function that concatenates two tensors in the
channel dimension, and Outputss represents the output feature map of
SS.

Secondly, Outputss will be input into SEB for extracting irregular
features. In remote sensing images, many features are composed of
multiple overlapping objects, as well as many bizarre features. These
shape of these features are irregular, and conventional square convo-
lution kernels are difficult to effectively sample their features. There-
fore, deformable convolution is introduced to construct SEB, thereby
enhancing the extraction of irregular features. The convolution here is
combined with offset learning, which allows the size and position of the
convolution kernel to be dynamically adjusted according to the image.

| [%]

o]
) =

Offset field

%offsets
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This allows the shape of the convolution kernel to adapt to the shape and
size of different objects. Here, Outputggg represents the output feature
map of SEB.

Finally, Outputsgg is input into PEB for multi-scale feature extraction,
and the problem of insufficient receptive field and loss of detail features
is solved. Four sets of well-designed convolutions reduce the dimen-
sionality of the feature map to obtain high-quality spatial features. Then,
the four dimensionally reduced features are spliced together in the
channel dimension, and the channel features are fused through point
convolution. Finally, residual connections are introduced to speed up
the training of the network. The process of PEB can be represented as:

Outputprs = Convy .1 (Feoncat (A, B, C, D) + Outputsgg) 8)

Here, Conv;,; represents point convolution, Fnq(,) represents a
functional function that splices two tensors in the channel dimension, A,
B, C, D represent four sets of well-designed convolutions, Outputpgs rep-
resents the output feature map of the PEB (i.e., the final output feature
map of the SDPM).

2.4. LSM

The latent spatial representation ability of conventional probability
models is insufficient. The feature maps in probability models are deep
features extracted multiple times, which contain a large number of
spatial and channel features. However, the convolution blocks in con-
ventional probability models cannot accommodate a large number of
features, resulting in feature loss. Based on this, this paper designs LSM
to enhance the deep feature representation ability of probability models,
thereby greatly improving the accuracy of probability models (Fig. 5).

The feature extraction process of LSM is divided into two parts,
including large kernel bar convolution for spatial feature enhancement
(LKE) and channel feature extraction. LKE adopts a four-branched
structure, and the convolutions selected are all large kernel convolu-
tions, which can greatly improve the latent spatial representation abil-
ity. However, large kernel convolution can bring huge computational
burden. Therefore, strip convolution is adopted to obtain the same
receptive field with half the computational complexity. In addition, a
residual branch is introduced to accelerate the training of the network. It
should be noted that the convolution kernels in LKE are all single
channel patterns, and there is no interaction of channel features.

The process of LKE can be represented as:

qu)lltLKE =E+ COTlV] «7 (COTlV7><1 (E)) + COTlV1><11 (COTIVU «1 (E))
+ Convy o1 (COHV21x1(E)) 9
Here, E represents the feature of the Input in LKE after a 5x5

convolution.
Then, a point convolution is adopted to extract the channel features

Output //
=i
=|| /'/

Pointwise
Addition
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Fig. 4. Schematic diagram of SDPM. Input represents the input feature map, and Output represents the output feature map. In Conv2D 3 x 3 ccm ¢-m 1, 3 x 3
represents the shape of the convolution kernel, the first c-m represents the number of input channels, the last c-m represents the number of output channels, and 1
represents the number of channel groups. The parameter settings for other convolutions are also the same. The input data here is mapped to high-dimensional data

and therefore is multi band.
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Fig. 5. Schematic diagram of LSM.

and the final feature map is obtained. That is
OlllputLSM = COHV1><1 (OutputLKE) (1 O)

In general, LSM separates spatial feature extraction from channel
feature extraction. It achieves high latent spatial representation capa-
bility at low complexity through the strip convolution of large kernels.
As a result, the modeling accuracy of the probabilistic model is greatly
improved.

2.5. Rate-distortion optimization

The goal of the compression framework is to achieve a balance be-
tween compression and distortion. To achieve this, a rate distortion
optimization strategy is often added to the compression framework to
guide the model for efficient training. In short, the strategy is designed to
ensure that the data is compressed with as little information loss as
possible. The rate distortion optimization strategy can be represented as

argminLossroq = R + AD 11)

Here, R represents entropy rate, which is the cross-entropy between
the latent edge distribution and the learning entropy model. D repre-
sents distortion between the original image and the reconstructed
image. Different bitrates can be controlled by adjusting the penalty co-
efficient 1.

R=R; +R; (12)

Here, the bitrate consists of the latent representation information y
together with the side information z.

Ry = =) l0g, (ps(¥)) (13)

R, = -3 log, (pi(2)) (14)

Here, py is an entropy model that can be learned, p; represents Hyper
encoder.

To further improve the quality of image compression, a novel rate
distortion optimization strategy is proposed in this paper. Lossypsg is
introduced into Lossroyq, that is, the ability of the whole network to

reconstruct structural features is improved by aligning the structural
features between the original image and the reconstructed image. The
new rate distortion optimization strategy can be expressed as:

argminProposedLossto = R + A(D + wLoSSyper) (15)

Here, y represents the coefficient of Lossypsg.-

3. Experimental results and analysis

Sufficient experiments have been carried out on some remote sensing
image datasets, including San Francisco [52], NWPU-RESISC45 [53],
and UC-Merced [54]. These datasets contain a wealth of ground object
information, which can effectively evaluate the performance of DME-
Net. In this paper, DMENet is compared with some excellent compres-
sion methods, including traditional codecs and deep learning-based
compression models, to verify the superiority of the proposed method.
Traditional image compression methods include JPEG2000 [11], BPG
[55], and WebP [14]. Compression models based on deep learning
include Minnen et al. [56], Balle et al. (hyperprior) [57], Balle et al.
(factorized-relu) [57], Tong 2023 [58] and Shi2024[46]. Experimental
results show that the proposed DMENet has the best compression per-
formance in both PSNR and MS-SSIM evaluation indicators. In addition,
the quality of the reconstructed images obtained by different compres-
sion methods is evaluated through the classification task, which further
verifies the superiority of DMENet.

3.1. Experimental setting
3.1.1. Introduction to remote sensing image dataset

1. Dataset San Francisco: San Francisco is a dataset of remotely sensed
images from [52]. It is a remote sensing image with a resolution of
17408x17408, covering a variety of feature information such as
buildings, coasts, highways, ports, lakes, etc. In this paper, it is
cropped to 256x256 pixel images, and 3000 valid images are
selected to form the dataset. These images are divided into a training
set, a validation set, and a test set at a ratio of 8:1:1. Fig. 6 shows
some of the samples.
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(i)
Fig. 6. Some images from San Francisco dataset. (a) Buildings (b) Coastline (c) Highway (d) Basketball court (e) Tennis court (f) Harbour (g) Parking lot (h) Forest (i)

Farmland (j) Lake.

2. Dataset NWPU-RESISC45: NWPU-RESISC45 is provided by North- 3.1.2. Evaluation indicators

western Polytechnical University (NWPU). The dataset contains a To evaluate the quality of reconstructed images, two commonly used

total of 45 different remote sensing image scene categories. Each evaluation metrics are adopted, i.e., peak signal-to-noise ratio (PSNR)

category contains 700 images, each with a resolution of 256x256 and multi-scale structural similarity index measurement (MS-SSIM). In

pixels. The dataset contains a variety of geographical environments the part of remote sensing scene image classification, the overall accu-

and scenarios, including airports, deserts, churches, forests, etc. The racy (OA) and confusion matrix (CM) are also used to measure the

140 images in each category were selected to form a dataset of 6,300 classification performance.

remote sensing images, which was then divided into a training set, a

validation set, and a test set at a ratio of 8:1:1. Fig. 7 gives some of the 1)PSNR: PSNR compares the reconstructed image to the original

samples. image from the point of view of the mean square error. The higher
3. Dataset UC-Merced: UC-Merced is a remote sensing image dataset the PSNR value, the higher the fidelity of the reconstructed image.

provided by the University of California, Merced. The UC-Merced The peak signal-to-noise ratio can be expressed as:

dataset consists of 21 different categories, each consisting of 100 Lo max ()

images. A total of 2100 images are included, each with a resolution PSNR(X,X) = EZi:llOlng(TEi) (16)

of 256x256 pixels. The images include farmland, airports, forests
and other landform scenes. The dataset UC-Merced is divided into a
training set, a validation set, and a test set at a ratio of 8:1:1. Fig. 8

shows some of the samples. ..
P Here, MSE represents the mean square error between the original

image and the reconstructed image. max?(X) represents the square of
the largest pixel in band i.C represents the number of bands.

Fig. 7. Some images from NWPU-RESISC45 dataset. (a) Airport, (b), Basketball court, (c), Beach, (d) Bridge, (e), Desert, (f) Church, (g) Clouds, (h) Forest, (i) Port,
(§) Island.
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2)MS-SSIM: MS-SSIM is a multi-scale structural similarity index. It
measures the difference between the original image and the recon-
structed image by merging image details at different resolutions. The
value ranges from O to 1, with higher values indicating higher sim-
ilarity and higher quality of the reconstructed image. The formula for
MS-SSIM can be expressed as:

2pxpy + C >“"’ (
XZ "rﬂ)‘(z +C

20)& + Cy

ze + U;(_Z + Cz

M {m
Dus-ssm =1 — H ) a7)
m=1

Here, M represents different resolutions, uy and p;, represent the
mean of the original image and the reconstructed image, ox and o}

represent the standard deviation between the original image and the
reconstructed image, o, represent the covariance between the original

image and the reconstructed image, a, and {,, represent the relative
importance between the two terms, C; and C, are constant terms to
prevent the divisor from being 0.

To clearly compare the differences in MS-SSIM values, they are
converted into decibel values. This process can be expressed as:

MS — SSIM = —10log, (1 — Dys_ssm) (18)

3)Classification indicators of remote sensing scenes: In this paper,
two widely used remote sensing scene classification evaluation in-
dicators are selected to measure the quality of the reconstructed
image, including OA and CM. The OA value is obtained by dividing
the number of correctly classified images by the total number of test
images, and it reflects the overall performance of a classification
model. CM reflects the degree of confusion and detailed classification
errors between different scene categories. Each row in the CM rep-
resents the true category, and each column represents the predicted
category.

3.1.3. Experimental environment and parameter settings

In this study, the proposed DMENet is implemented by PyTorch. The
Adam optimizer was chosen. In this network, two optimizers are used,
one is the main optimizer between the main encoder (Compression) and
the main decoder (Reconstruction), and the other is the auxiliary opti-
mizer between the hyper encoder and the hyper decoder. For the main
optimizer, the initial learning rate is set at 10~%, and the optimal model
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s 8
Fig. 8. Some images from UC-Merced dataset (a) Farmland (b) Airplanes (c) Baseball Stadiums (d) Beaches (e) Buildings (f) Forests (g) Roads (h) Golf Courses (i)
Ports (j) Overpasses.

of DMENet will be stored when the learning rate decays to 10~° during
network training. For the auxiliary optimizer, its initial learning rate is
set at 10~2. During training, the batch size is set to 8. In this experiment,
the neural network models are trained on an NVIDIA GeForce RTX 3090,
and the traditional codecs are performed on a CPU (i9-9900K
CPU@3.60GHz). For the sake of fairness, all experiments in this paper
were conducted in the above environment. The penalty coefficient 1
used in this paper is [0.660, 0.508, 0.211, 0.072, 0.033, 0.013, 0.007].
In the proposed rate distortion optimization strategy, the coefficient y of
Lossypsk is set to 0.0185. In C block1-4, R block1-4, Hyper encoder, and
Hyper decoder, N is set to 256. In the classification of remote sensing
scenes, the benchmark model used for testing was EMTCAL (Efficient
Multiscale Transformer and Cross-Level Attention Learning) [59]. The
dataset used for training is NWPU-RESISC45, and the training-to-test
ratio is 10%-90%. The images used for compression and the images
used for remote sensing scene classification training are not crossed. The
reconstructed images are only used for testing the classification per-
formance, not for the training of the classification network.

3.2. Rate distortion performance

In this experiment, PSNR and MS-SSIM were used to evaluate the rate
distortion performance of the model. Fig.s 9-11 show the PSNR and MS-
SSIM rate distortion performance curves for all model experiments on
the San Francisco, NWPU-RESISC45, and UC-Merced datasets, respec-
tively. In traditional codec-based image compression methods, BPG
exhibits excellent rate distortion performance, which is better than
WebP and JPEG2000 in most cases. This significant advantage is mainly
due to BPG’s multi-channel encoding technology, which allows different
color channels to be encoded independently, allowing for fine control of
image detail features. In the image compression method based on deep
learning, Balle et al. (factorized-relu) exhibits relatively poor rate
distortion performance, mainly because it only uses a simple convolu-
tional layer and has limited feature extraction ability. While this can be
improved by increasing the number of convolutional layers, this
significantly increases the model parameters and lengthens the infer-
ence time. In Fig. 10 and Fig. 11, the Shi2024 and Tong2023 methods
achieve relatively good compression performance due to their excellent
attention mechanism design and reasonable residual convolution mod-
ules. But they perform poorly on the San Francisco dataset, suggesting
that they are less robust. The other methods are mediocre in rate
distortion performance, mainly because they lack a strong attention
mechanism and excellent rate distortion optimization strategy. On the
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Fig. 11. Rate distortion curves on UC-Merced. (a) PSNR (b) MS-SSIM.

dataset San Francisco, specifically, at 0.46 bpp, DMENet achieves PSNR
improvements of 1.8%, 7.2 %, 1.8%, 2.4%, and 1.5% compared to that
of Balle et al. (hyperprior), Balle et al. (factorized-relu), Minnen et al.,
Tong2023, and Shi2024, respectively. In addition, DMENet achieves
MS-SSIM improvements of 1.0%, 9.1%, 0.6%, 0.9%, and 0.5% compared
to that of Balle et al. (hyperprior), Balle et al. (factorized-relu), Minnen
et al, Tong2023, and Shi2024, respectively. This performance

10

advantage becomes even greater at higher bpp. For example, at 1.1bpp,
DMENet achieves PSNR improvements of 11.3%, 28.3%, 11.0%, 13.4%,
and 7.9% compared to that of Balle et al. (hyperprior), Balle et al.
(factorized-relu), Minnen et al., Tong2023, and Shi2024, respectively. In
addition, DMENet achieves MS-SSIM improvements of 15.0%, 41.0 %,
13.9%, 20.2%, and 6.7% compared to that of Balle et al. (hyperprior),
Balle et al. (factorized-relu), Minnen et al., Tong2023, and Shi2024,
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respectively. The DMENet proposed in this paper achieves the best rate
distortion performance on three datasets at the same time. This superior
performance not only strongly proves the robustness of DMENet, but
also clearly validates the effectiveness of MDEI, SDPM, LSM and the
proposed rate distortion optimization strategy in DMENet. In particular,
multi-dimensional edge information plays a significant role in
improving the performance of the model at different bpp.

3.3. Visualization comparison experiment of reconstructed images

To further verify the effectiveness of DMENet, a visual comparison
experiment was carried out in this paper. Fig. 12 shows the recon-
structed images of each method on the dataset San Francisco at 0.25
bpp, along with their partial enlargements. Fig. 13 shows the recon-
struction results of each method on the dataset UC-Merced at 0.28bpp.
Taking Fig. 12 as an example, for the traditional image compression
method based on codec, the zebra crossing of the BPG method retains
more texture information than that of JPEG2000 and WebP. The zebra
crossings in the JPEG2000 and WebP reconstruction areas have lost
their clear edges and are blurred. The main reason is that the BPG
method has a multi-channel coding technology, which has a stronger
ability to reconstruct detailed features. The image compression and
comparison method based on deep learning generally achieves better
visualization results than traditional image compression methods, but it
is still worse than DMENet. In Fig. 12, some artifacts and noise are
prevalent in the reconstructed images of Minnen et al., Balle et al., and
Balle et al. (factorized-relu). This results in a blurry image in some areas.
The transitions between pixels in the reconstructed images of these three
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contrast methods are too coarse, which leads to color flattening and
distortion. Finally, comparing Tong2023, Shi2024 and DMENet, the roof
of the partially enlarged image in DMENet leaves more texture features
and clearer edges of the object. The magnified area of the Tong 2023 and
Shi 2024 reconstruction images is too smooth, and some detail features
are lost. As a result, DMENet achieves the best visualization on the
dataset San Francisco. In addition, in Fig. 13, DMENet also achieves the
best visualization on the dataset UC-Merced. This also verifies that the
proposed method has strong robustness. From the perspective of visu-
alization, the above experiments fully prove that the proposed DMENet
can reconstruct more complete and clearer images of structural features,
and also prove that the new rate distortion optimization strategy plays a
key role in aligning the structure.

In addition, the visualization results of the feature maps are provided
to demonstrate the effectiveness of the MDEI in extracting structure
features and edge features. Here, the three branches of MDEI (HA, VA,
EEM) and the overall feature map are visualized. Since the input images
are all three bands, each band of the feature map is visualized. As shown
in Fig. 14, HA extracts the horizontal structural features, VA extracts the
vertical structural features, and EEM extracts the edge features. Finally,
the overall feature map provides high-quality structural and edge in-
formation, which strongly illustrates the effectiveness of MDEIL

3.4. Ablation experiments

In this paper, sufficient ablation experiments are carried out to verify
the effectiveness of the proposed components such as MDEL, SDPM and
LSM. Fig.s 15-17 are the results of ablation experiments on the dataset

(O (2

Fig. 12. Visual comparison of reconstructed images obtained by different methods on the dataset San Francisco. (a) Original (b) Minnen et al.(bpp:0.251;PSNR:
29.66;MS-SSIM: 7.55) (c) Balle et al.(hyperprior) (bpp:0.251;PSNR:29.74;MS-SSIM:7.77) (d) Balle et al.(factorized-relu) (bpp: 0.250 PSNR: 29.06MS-SSIM: 7.27) (e)
Tong2023 (bpp:0.249;PSNR: 30.25;MS-SSIM: 8.08) (f) Shi2024 (bpp: 0.251;PSNR: 30.43;MS_SSIM: 8.27) (g) JPEG2000(bpp: 0.265; PSNR:22.79; MS-SSIM:1.25) (h)
Webp(bpp: 0.38; PSNR:24.81; MS-SSIM:2.78) (i) BPG (bpp:0.244; PSNR:24.36; MS-SSIM:1.94) (j) DMENet (bpp: 0.250; PSNR:30.39; MS-SSIM:8.24).
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Fig. 13. Visual comparison of reconstructed images obtained by different methods on the dataset UC-Merced. (a) Original (b) Minnen et al.(bpp:0.280;PSNR:30.79;
MS-SSIM:6.42) (c) Balle et al.(hyperprior) (bpp: 0.278;PSNR:30.90;MS-SSIM:6.81) (d) Balle et al.(factorized-relu) (bpp:0.281;PSNR:29.27;MS-SSIM:5.75) (e)
Tong2023 (bpp:0.281;PSNR:29.74;MS-SSIM:5.07)(f) Shi2024(bpp:0.278;PSNR:30.43;MS-SSIM:6.83)(g)JPEG2000(bpp:0.268;PSNR:26.47;MS-SSIM:1.21)(h)Webp
(bpp:0.260;PSNR:26.88;MS-SSIM:1.88)(1)BPG(bpp:0.271;PSNR:27.19;MS-SSIM:2.90)(j) DMENet (bpp:0.281;PSNR:31.55;MS-SSIM:7.49).

HA

Band 1 Band 2

and 3

Band 1 Band 3

Band 1

Fig. 14. Visualization of feature maps in MDEI

San Francisco, the dataset NWPU-RESISC45, and the dataset UC-
Merced, respectively. The baseline represents the baseline network,
and MDENet (MDEI), MDENet (SDPM), MDENet (LSM),MDENet
(SDPM+ MDEI) ,MDENet (SDPM+ LSM) and MDENet (MDEI + LSM)
represent the network after different modules are added. MDENet stands
for complete network.. Fig.s 15-17 show that the compression perfor-
mance of MDENet (MDEI), MDENet (SDPM), MDENet (LSM), MDENet

12

(SDPM+ MDEI) ,MDENet (SDPM+ LSM) and MDENet (MDEI + LSM)
exceeds that of baseline at different bit rates. This fully illustrates the
effectiveness of aligning structural features between the original image
and the reconstructed image. It also fully shows that the enhancement of
irregular features and multi-scale features is conducive to the
compression of remote sensing images. And the probability model with
higher latent spatial representation capabilities is of great significance



C. Shi et al.

=O= Baseline
4“5 —O— DMENeL(LSM)
43.5 DMENet(MDEI)
425 —O— DMENet{SDPM)
415 —O— DMENet

405 —8— DMENet(SDPM+MDEI)
\'M'-NWHNIJPMH\ML/A

DMENet(MDEIH M
V.

375

PSNR(dB)

Rate(bpp)

(a)

0.65 0.75 0.85 0.95 1.05

Knowledge-Based Systems 310 (2025) 112996

23
—O— Baseline

—O— DMENet({LSM)
DMENet{MDEI)

=—O— DMENet(SDPM)

—O— DMENet

~&— DMENet(SDPM+MDEI)

—&— DMENet(SDPM+LS\

DME Net(MDE

MS-SSIM(dB)
B

=
@

04 0.5 0.6 0.7 038 09 1 6 |

Rate(bpp)

(b)

Fig. 15. Some ablation results of the proposed method on the San Francisco dataset. (a) PSNR, (b) MS-SSIM.

for image reconstruction. MDENet achieves the best rate distortion
performance at the same bit rate. This shows that the network, module,
and rate distortion optimization strategies can work together efficiently
to achieve excellent compression performance.(Fig. 16).

3.5. Verification of the generalization of the proposed method

To verify the generalization of the proposed DMENet, the rate
distortion performance was tested on a dataset of natural scenes. Here, a
dataset (Natural scenes) is constructed, which includes five scenes:
bathroom, bookstore, classroom, elevator, and kitchen. A total of 500
images are included, each with a resolution of 256x256 pixels. The
dataset is divided into a training set, a validation set, and a test set at a
ratio of 8:1:1. In addition, two image compression methods with
excellent performance were selected for comparison. As shown in
Fig. 18, DMENet still achieves significant performance advantages over
PSNR and MS-SSIM. This fully demonstrates that DMENet is also suit-
able for the compression of natural images. The reason is that there are
also a large number of structural features and edge features in the nat-
ural image, and the proposed DMENet strongly aligns these features.
This further proves that the proposed DMENet method has good
generalization ability.
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3.6. Classification of remote sensing scene images

In this paper, the reconstructed images obtained by different
compression methods are used for remote sensing scene classification, to
verify the effectiveness of the proposed DMENet method from the
perspective of application. The dataset selected is NWPU-RESISC45. The
benchmark model for remote sensing scene classification is EMTCAL. To
ensure the fairness of the experiment, the reconstructed images of
different methods were obtained at a bit rate of 0.7 bpp. Fig. 19 shows
the overall accuracy (OA) of the reconstructed images obtained by
different methods when classifying the scenes of remote sensing images.
The proposed DMENet obtained the highest OA value and achieved the
best classification performance, which was more than 1.31% compared
to Balle et al. (factorized-relu). In addition, it also has certain advantages
over other methods. The classification accuracy of the proposed DMENet
on each category is shown in Fig. 20. In particular, it has achieved 100%
classification accuracy in many categories such as airplane, bridge, and
freeway. This outstanding performance is mainly attributed to the two
core advantages of DMENet: powerful structural feature extraction
capability and edge feature extraction ability. These two capabilities
enable DMENet to efficiently capture and reconstruct the rich edge
structure information contained in objects such as bridges and high-
ways, ensuring high-precision classification on these categories. Fig. 21
shows the confusion matrix of Minnen et al., Balle et al. (hyperprior),
Balle et al. (factorized-relu), Tong2023, Shi2024, and DMENet for
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Fig. 16. Some ablation results of the proposed method on the NWPU-RESISC45 dataset. (a) PSNR, (b) MS-SSIM.
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Fig. 17. Some ablation results of the proposed method on the UC-Merced dataset. (a) PSNR, (b) MS-SSIM.
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Fig. 18. Rate distortion curves on Natural scenes dataset. (a) PSNR (b) MS-SSIM.
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Fig. 20. Classification accuracy for each category (DMENet).

remote sensing image classification. In the confusion matrix in Fig. 21,
DMENet has a better classification effect than other comparison methods
in the classes of sparse_residential, cloud, lake, and river. This is mainly
because these types of scenes have more structural features (such as the
edges of lakes and rivers). DMENet enhances the enhancement of a va-
riety of structural features, so that the high-quality structural features
greatly improve the quality of the final discriminant features. This is the
reason why the reconstructed image obtained by the proposed DMENet
achieves the best performance in remote sensing scene classification.

3.7. Complexity analysis

In this section, the complexity analysis is carried out, and the eval-
uation indicators mainly include Parameter, FLOPs, GPU Memory,
Compression time, and Reconstruction time. The input image size is
3%256x256. Through comparison, it is found that the proposed DME-
Net has great advantages in complexity. By comparing the parameters, it
can be found that DMENet has obtained the fewest parameters, which
are only 42.40%, 53.48%, 95.32%, 19.23%, and 14.37% of the methods
of Minnen et al., Balle et al. (hyperprior), Balle et al. (factorized-relu),
Tong2023, Shi2024, etc., respectively. This fully illustrates the superi-
ority of DMENet. By comparing FLOPs, it can be found that DMENet still
achieves the fewest FLOPs, which are only 20.37%, 20.80%, 21.23%,
8.20%, and 4.18% of Minnen et al., Balle et al. (hyperprior), Balle et al.
(factorized-relu), Tong2023, and Shi2024, respectively. Compared to
GPU Memory, DMENet is in the middle of the pack. The reason for this is
that some multi-branch structures are used in the network, resulting in
more parallel computing, resulting in relatively large GPU memory.
Comparing the compression time and the Reconstruction time, it can be
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found that DMENet’s time consumption is in the third place, but at the
same bit rate, DMENet’s PSNR and MS-SSIM are significantly higher
than those of other comparison methods. These experiments strongly
demonstrate that DMENet can achieve very good rate distortion per-
formance at low complexity (Table 3).

4. Conclusions

In this paper, DMENet is proposed to achieve high-fidelity remote
sensing image compression while retaining higher-quality structural
features. First, MDEI is designed to extract multi-dimensional structural
features in images. These features are structurally aligned through loss,
with the aim of restoring high-quality structural features. Secondly,
SDPM is constructed to achieve dynamic extraction of irregular features
and multi-scale features. Thirdly, LSM is proposed to solve the problem
of deep feature loss caused by low information capacity in probability
models. Finally, the whole network is guided by a rate distortion opti-
mization strategy that pays more attention to multi-dimensional struc-
tural features. Compared with other methods, the proposed DMENet
achieves the best rate distortion performance. Classification is used to
evaluate the influence of the reconstructed images obtained by different
compression methods on the application, and it is proved that the pro-
posed DMENet method can provide the best classification performance,
which indicates that the proposed method can retain the important in-
formation in remote sensing images more effectively. In future work, we
will explore a variable rate remote sensing image compression method,
which can greatly reduce the training cost of the model. In addition, we
will further perform more detailed hierarchical processing on the
compression and reconstruction process of remote sensing images to
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Fig. 21. Confusion matrix of the reconstructed image by different methods. (a), (b), (c), (d), (e), and (f) correspond to Minnen et al., Balle et al. (hyperprior), Balle
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Table 3
Complexity parameters for different compression methods.
Minnen et al. Balle et al.(hyperprior) Balle et al. (factorized-relu) Tong2023 Shi2024 DMENet
Parameter 12.05M 9.91M 5.56M 27.55M 36.87M 5.30M
FLOPs 27.04G 26.49G 25.95G 67.21G 131.91G 5.51G
GPU Memory 3.0GB 2.8GB 1.6GB 4.2GB 7.7GB 3.1GB
Compression time 0.593s 0.073s 0.032s 0.701s 1.156s 0.166s
Reconstruction time 1.078s 0.077s 0.039s 1.321s 1.921s 0.083s
reduce the information gap between latent representation features and [7] J Ntnez, O Fors, X Otazu, et al., A wavelet-based method for the determination of

specific tasks.
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